Adding omega-3 fatty acids to a protein-based supplement during pre-season training results in reduced muscle soreness and the better maintenance of explosive power in professional Rugby Union players

Katherine Elizabeth Black, Oliver C. Witard, Dane Baker, Philip Healey, Victoria Lewis, Francisco Tavares, Sam Christensen, Tom Pease & Brett Smith

To cite this article: Katherine Elizabeth Black, Oliver C. Witard, Dane Baker, Philip Healey, Victoria Lewis, Francisco Tavares, Sam Christensen, Tom Pease & Brett Smith (2018) Adding omega-3 fatty acids to a protein-based supplement during pre-season training results in reduced muscle soreness and the better maintenance of explosive power in professional Rugby Union players, European Journal of Sport Science, 18:10, 1357-1367, DOI: 10.1080/17461391.2018.1491626

To link to this article: https://doi.org/10.1080/17461391.2018.1491626

Published online: 09 Jul 2018.

Submit your article to this journal

Article views: 247

View Crossmark data
Adding omega-3 fatty acids to a protein-based supplement during pre-season training results in reduced muscle soreness and the better maintenance of explosive power in professional Rugby Union players

KATHERINE ELIZABETH BLACK1, OLIVER C. WITARD2, DANE BAKER3, PHILIP HEALEY1, VICTORIA LEWIS1, FRANCISCO TAVARES3,4, SAM CHRISTENSEN1, TOM PEASE4, & BRETT SMITH3,4

1Department of Human Nutrition, University of Otago, Dunedin, New Zealand; 2Faculty of Health Sciences and Sport, University of Stirling, Scotland, UK; 3Chiefs Super Rugby Franchise, Hamilton, New Zealand & 4Health, Sport and Human Performance, Waikato University, Hamilton, New Zealand

Abstract

Evidence suggests that omega-3 fatty acid supplementation could reduce muscle soreness and maintain muscle function following eccentric exercise-induced muscle damage. The aim of this applied field study was to investigate the effectiveness of consuming a protein-based supplement containing 1546 mg of omega-3 polyunsaturated fatty acid (PUFA) (551 mg eicosapentaenoic acid (EPA) and 551 mg docosahexaenoic acid (DHA)) twice daily (FO) compared to a protein-based placebo (P) on muscle soreness, countermovement jump (CMJ) performance and psychological well-being in 20 professional Rugby Union players during 5 weeks of pre-season training. Players completed a 5-point-Låkert soreness scale with 5 indicating "no soreness" and a questionnaire assessing fatigue, sleep, stress and mood each morning of training, plus they performed CMJ tests once or twice per week. Data were analysed using magnitude-based inferential statistics and are presented as percent beneficial/trivial/harmful. On day 35, there was a likely (% beneficial/trivial/harmful: 94/5/1) moderate (0.75, standardized mean difference (SMD)) beneficial effect of FO vs. P on the change in lower body muscle soreness compared with day 0 (FO: −3.8 ± 21.7%; P: −19.4 ± 11.2%). There was a likely (92/7/0) moderate (SMD: 0.60) beneficial effect of FO vs. P on CMJ performance (change from baseline to day 35, FO: +4.6 ± 5.9%; P: −3.4 ± 8.6%). From day 20, a moderate beneficial effect of FO on fatigue was observed. In terms of practical relevance, the moderate beneficial effect of adding fish oil to a protein-based supplement on muscle soreness translated into the better maintenance of explosive power in elite Rugby Union players during pre-season training.

Keywords: Muscle recovery, fatigue, rugby, fish oil

Highlights

• The first study to investigate the influence of fish oil ingestion on sport-specific markers of recovery during pre-season training in professional Rugby Union players.
• Adding fish oil to a protein-based supplement resulted in a moderate beneficial effect on lower body muscle soreness and better maintenance of countermovement jump performance during pre-season training.
• Adding fish oil to a protein-based supplement resulted in a moderate reduction in fatigue during pre-season training, but did not influence stress or mood.

Introduction

Athletes involved in contact sports such as Rugby Union are regularly exposed to muscle damage during both training and match play (Naughton, Miller, & Slater, 2017). The physiological demands of Rugby Union result in an acute inflammatory response and elevations in blood creatine kinase (CK) and myoglobin concentrations during acute recovery. Such perturbations are indicative of structural damage to the muscle and/or extracellular matrix (Cunniffe et al., 2010; Takarada, 2003). The level of structural damage to the muscle fibres during Rugby depends, in part, on the number of tackles experienced, which causes muscle trauma...
Further, repetitive sprints with rapid decelerations result in eccentric muscle contractions which also contribute to muscle damage (Naughton et al., 2017). This damage is initiated by overstretching of the sarcomere, and leads to membrane disruption of the sarcosome and t-tubules, excitation-contraction coupling dysfunction, entry of calcium ions into the sarcosome and ultimately loss of muscle strength (Peake, Neubauer, Della Gatta, & Nosaka, 2017; Takarada, 2003). While the exact aetiology of muscle damage and its associations with soreness remain unresolved (Close, Ashton, Cable, Doran, & MacLaren, 2004), there is evidence that muscle soreness is linked to inflammation, connective tissue damage, muscle damage, or is caused by structural damage to the extracellular matrix during exercise (Lewis, Ruby, & Bush-Joseph, 2012; Peake et al., 2017).

The rugby pre-season period is characterized by intensive daily training sessions with an emphasis on speed, strength, endurance and contact. Therefore, coaches progressively overload training to transition players from the off-season to the competitive season. Despite the focus of pre-season being on training adaptation, and the notion that interfering with the recovery process may blunt the adaptive response to exercise (Markworth, Maddipati, & Cameron-Smith, 2016), optimizing recovery during this period is pertinent for players to maintain the intensities required for each training session. Pre-season also is a period during which nutritional strategies for the competitive season can be practiced and evaluated. In theory, attenuating muscle damage with nutritional interventions during this period could facilitate players to better maintain performance, potentially via psychological and physiological mechanisms (McLean, Coutts, Kelly, McGuigan, & Cormack, 2010; Tavares, Smith, & Driller, 2017).

The most common nutritional strategy investigated for recovery from muscle-damaging exercise is protein. Amino acid ingestion facilitates muscle protein turnover during recovery (Tipton, Ferrando, Phillips, Doyle, & Wolfe, 1999), synthesizing new muscle proteins and repairing old damaged proteins. In theory, promoting the repair of damaged proteins reduces the severity of exercise-induced muscle damage and accelerates recovery. However, since mixed results have been reported for protein ingestion and muscle recovery from damaging exercise (Pasiakos, Lieberman, & McLellan, 2014), alternative nutritional interventions warrant investigation.

Omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation also has received attention for its potential to aid recovery (Gray, Chappell, Jenkinson, Thies, & Gray, 2014; Lenn et al., 2002; Tartibian, Maleki, & Abbasi, 2010). Fish oils contain the n-3 PUFA’s, 20:5n3 (eicosapentaenoic acid, EPA) and 22:6n3 (docosahexaenoic acid, DHA). The incorporation of EPA and DHA into cellular membranes exerts anti-inflammatory properties by initiating a reduction in the pro-inflammatory hormones (Calder, 2015; Erikson, 1996). In addition, n-3 PUFA ingestion reduces oxidative stress, evidenced by a reduction in the expression of plasma thiobarbituric acid and H2O2-induced lymphocyte DNA damage following exercise (Gray et al., 2014). Hence, it has been suggested that omega-3 PUFA ingestion can act as a free radical scavenger (Barbosa et al., 2003), which can modulate the production of prostaglandin E2, whereby there is a decrease in PGE-2 production and an increase in PGE-3 (Calder, 2006). Dietary n-3 PUFA also are essential components of nerve endings and the myelin sheath of neurons of the nervous system (Laye, Nadjar, Joffre, & Bazinet, 2018; Pu et al., 2013). Specifically, DHA is readily incorporated into the neuronal membrane where it appears to exert its biological action. For example, 21 days of n-3 PUFA supplementation during training was shown to enhance neuromuscular development in athletes (Lewis, Radonic, Wolaver, & Wells, 2015). Hence, there is scientific rationale to link n-3 PUFA ingestion with a reduced inflammatory response to exercise and improved neuromuscular function (Lewis et al., 2015).

The majority of previous studies that investigated the impact of n-3 PUFA supplementation on recovery from exercise-induced muscle damage were conducted within a controlled laboratory setting, whereby muscle damage was initiated by protocols (i.e. knee extension/flexion on isokinetic dynamometer, downhill running) that do not necessarily reflect the typical movement patterns of elite athletes (Corder, Newsham, McDaniel, Ezekiel, & Weiss, 2016; Gray et al., 2014; Jouris, McDaniel, & Weiss, 2011; Lembi, Capodice, Hebert, & Swenson, 2014; Lenn et al., 2002; McGlory et al., 2016). For example, Jouris et al. (2011) reported an attenuation of muscle soreness with the ingestion of 3 g/day of n-3 PUFA over a 7 day supplementation period following an eccentric bicep curl exercise protocol (Jouris et al., 2011). The beneficial role of n-3 PUFA ingestion was primarily attributed to an anti-inflammatory response. However, the lack of a blinded placebo condition means that a “placebo effect” cannot be eliminated as a possible reason for the findings. In contrast, two experimental studies (Gray et al., 2014; Lenn et al., 2002) reported no changes in blood CK concentrations, performance or muscle soreness with fish oil supplementation following eccentric based exercise. However, given that the
change in muscle function following exercise was negligible, Gray et al. (2014) acknowledge the exercise protocol utilized exerted only mild muscle damage and may explain why no differences were detected. Given these equivocal findings, there is scope to investigate the influence of n-3 PUFA ingestion on exercise recovery using a training model of muscle damage that simulates the functional movements of elite athletes within an applied field setting (Cockburn, Bell, & Stevenson, 2013).

Therefore, the primary aim of the present study was to assess the impact of a twice daily supplement of n-3 PUFA combined with protein on muscle recovery in professional Rugby Union players during a 5-week training camp. We hypothesized that twice daily supplementation with 1546 mg omega-3 PUFA (551 mg EPA and 551 mg DHA) would reduce the perception of muscle soreness, attenuate the decline in countermovement jump (CMJ) performance and improve general well-being in elite Rugby Union players during pre-season training.

Methods

This double-blind, parallel designed, intervention study received ethics approval from the University of Otago, Human Health Ethics Committee. A verbal and written explanation of study procedures was provided to all participants, before providing written informed consent to participate. Thirty-three professional Rugby Union players volunteered to participate in the study. Participants were assigned to either a fish oil (FO) or placebo (P) supplement group, stratified by playing position and body composition goals (e.g., as part of pre-season players are placed into one of three groups based on their current skinfold measures and their individual optimal skinfolds. These groups are (1) gain muscle mass, (2) maintain current body composition, (3) lose body fat). While 16 players were assigned to FO and 17 to P, only 9 in FO and 11 in P completed the study. The mean age of participants was 22 years and 7 months (standard deviation (SD): 2 years 11 months; range: 18 years 11 months – 27 years 11 months). Two participants dropped out of the study due to gastrointestinal illness and 7 to training-related injury. Six players did not complete all data collection.

Pre-season training schedule. All players performed 5 weeks of pre-season training as scheduled by team coaching staff. Training took place 5 days per week from 8 am to 5 pm, with sessions including strength and conditioning, match skills/simulated match play and flexibility on Monday, Tuesday, Thursday and Friday. Wednesday sessions were a recovery day, consisting of light training and meetings. Weekly training distances covered were 19.3 ± 3.8 km (FO 17.6 ± 7.0 km P 21.0 ± 6.5 km). During weeks 4–5, players travelled to Australia and completed a pre-season rugby match and a rugby 10s tournament.

Resistance training comprised of a strength intensification phase where all players were required to perform the same exercises, including sets and repetitions. The load for each repetition was based on individual 1REs. The on-field training load was monitored via a Global Positioning System (Statsports viper system, Statsports Group Ltd, N. Ireland). On-field training load was measured as fast running distance (FAST = velocity 4–7 m/s), sprint distance (SPRINT = velocity > 7 m/s) and high metabolic load distance (HMLD = W/kg > 25.5). Equations developed by di Prampero et al. (2005) and Osgnach, Poser, Bernardini, Rinaldo, and di Prampero (2010) enabled the calculation of metabolic power output (HMLD), which our research (Smith, Tarrant, & McIntosh, In press) suggests more accurately accounts for the energetic costs of acceleration and deceleration that occur during the intermittent and intensive running that is common in rugby (Gaudino et al., 2013; Kempton, Sirotic, Rampinini, & Coutts, 2015).

Dietary supplementation. Participants consumed two, 200 mL protein-based drinks daily for 5 weeks. The intervention group (FO) consumed drinks that contained multiple nutrients including 1546 mg of omega-3 PUFA (551 mg EPA and 551 mg DHA), whereas the placebo (P) group consumed drinks matched for protein (15.0 g/200 mL), carbohydrate (14.5 g/200 mL) and fat content (8.4 g/200 mL), but without omega 3 PUFA (Smartfish, Oslo, Norway). All drinks were served in identical white packages. While training in New Zealand, participants consumed one test drink after morning training and the other following afternoon training. These drinks were consumed alongside a protein shake containing an additional 15 g of whey protein (BSc, Whey Protein Powder, Body Science, Auckland, New Zealand). As players left training on Friday they were provided with four additional drinks and asked to consume one in the morning and one in the afternoon with meals on Saturday and Sunday. When in Australia (days 26–33) coaching staff provided players with drinks twice per day. All players were aware of best nutrition practices during flights, particularly regarding the importance of hydration. Accordingly, there was no difference in hydration status assessed via Urine Specific Gravity (Atago Ltd, Tokyo, Japan) from the first void of day 1 (FO: 1.024 ± 0.005; P: 1.025 ± 0.004) to the first void of day 35 (FO: 1.021 ± 0.010; P: 1.022 ± 0.004).

Breakfast, lunch and all snacks were consumed at training, i.e. Monday to Friday each week and all...
meals whilst in Australia were provided by the team nutritionist.

Data collection

Ear lobe blood samples were collected at baseline, day 19 and day 35, following at least 48 h without strenuous exercise and were later analysed for percent fatty acid composition. All blood samples were collected upon arrival at training prior to breakfast (7:30–8:00 am). The ear lobe was cleaned with an alcohol swab then punctured by a lancet (Becton, Dickinson contact activated lancet, Auckland, New Zealand). Blood was dispensed into Eppendorf tubes containing Ethylenediaminetetraacetic acid (EDTA) and stored at −80°C. At these timepoints, players were asked to record their weekly dietary fish consumption. Additional measurements were collected during the pre-season training period, including CMJ peak force, perceived feelings of muscle soreness, a McLean questionnaire on fatigue, sleep, stress and mood (McLean et al., 2010), skinfold assessments and strength. On day 35, participants were asked to predict whether they had been assigned to FO or P conditions.

Skinfold measurements. A level 1 trained and accredited International Society for the Advancement of Kinanthropometry (ISAK) anthropometrist performed skinfold measurements from eight sites (triceps, subscapular, biceps, iliac crest, supraspinale, abdominal, thigh, calf) on the right hand side of the body using body fat calipers (Holtain Ltd., Crosswell, United Kingdom) and tape measures (Lufkin Executive Thinline, W606PM). Skinfold measurements were collected at baseline and on the final day of the study and the average technical error of measurement (TEM) was 0.9%.

Countermovement jump performance. To measure neuromuscular fatigue, peak force (N) was measured using a CMJ test. All vertical jumps were performed between 08:00 and 10:00 am following breakfast, at baseline, days 5, 12, 16, 19, 22 and on day 35. Participants completed a standardized warm-up of dynamic stretches and bodyweight movements. Participants performed three CMJ with a brief rest between each jump on two force plates one under each foot (PASCO PS 2142, Roseville, CA, USA) to enable the measurement of peak force at a sample rate of 500 Hz. The total ground reaction force was calculated as the sum of the left and right force plate measures. Participants began each CMJ standing on the force plates with their knees fully extended and hands on their hips. Participants descended to a self-selected depth and jumped as high and quickly as possible.

<table>
<thead>
<tr>
<th>Day</th>
<th>Baseline</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 0</td>
<td>Day off</td>
<td>CMJ Blood MS Questionnaire 6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Week 1</td>
<td>5</td>
<td>CMJ MS Questionnaire</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Week 2</td>
<td>19</td>
<td>CMJ Blood MS Questionnaire</td>
<td>20</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>Week 3</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>Match 35</td>
<td>29</td>
</tr>
</tbody>
</table>

Notes. CMJ: Countermovement jumps. MS: Muscle soreness. Questionnaire: Questionnaire on fatigue, sleep, stress and mood. Drink consumption began on day 1.
possible. The best attempt, determined by peak force, was used for data analysis. CMJ is regularly performed, therefore all participants were familiar with the protocols. Force platform data were analysed using Pasco Capstone v1.4.0 software (PASCO, Roseville, California, USA). Our unpublished data from 18 elite Rugby Union players demonstrated an acceptable level of test-retest reliability (ICC: 0.89; CV: 4.6%).

Subjective muscle soreness and wellness questionnaire. This questionnaire has been previously utilized to reflect changes in training load amongst Rugby League players (McLean et al., 2010; Tavares, Healey, Smith, & Driller, 2017). In this study, the questionnaires were used to determine subjective scores for muscle soreness, fatigue, mood, sleep and stress (McLean et al., 2010). Participants rated responses on a 5-point-Likert scale (1–5). A higher score represented a positive response. All players were familiar with this questionnaire as it formed part of the team’s habitual monitoring procedure. Upper and lower body muscle soreness scores were rated using a diagram of a person with muscle groups divided into six compartments for both sides of the body (quadriceps, groin, calf, hamstrings, gluteus and upper body). Each muscle group was rated from 1–5 with 1 being “very sore” and 5 being “feeling great”. Therefore the maximum score for the lower body was 50 and upper body was 10. All questionnaires were completed prior to training.

Blood treatment and analysis. Plasma, erythrocyte and buccal cell lipids were extracted using the method of Bligh and Dyer (Bligh & Dyer, 1959). Samples were then analysed by Gas Chromatograph with flame ionization detection (HP-5890 Series, Hewitt-Packard, Wilmington, USA), as previously described (Dodds, McCoy, Rea, & Kennish, 2005). In brief, samples were thawed, dried and then extracted with chloroform and methanol at 200°C and 13.8 MPa, before further drying, rinsing and evaporation with nitrogen. The recovered lipids were reconstituted and hydrolyzed. One mL of distilled water and 2 mL of hexane were mixed with the solution. The organic portion was then removed.

Data handling and statistical analysis

All data were analysed using magnitude-based inferential statistics to determine inferences about the true effects of the intervention on CMJ, strength and the various subjective measures (Hopkins, 2007, 2018). This statistical approach allows for quantitative (trivial, small, moderate, large or very large) descriptions of the magnitude of difference between trials and establishes the likelihood of the experimental condition (i.e. FO) having a beneficial, trivial or harmful effect on the outcome of interest. Standardized mean differences (SMD) were calculated as the difference between the means divided by the pooled SD. The following quantitative criteria for the SMD was used to explain the practical significance of the findings: trivial <0.20; small 0.20–0.59; moderate 0.60–1.19; large 1.20–1.99; very large 2.0–3.90; and almost perfect >4.00. Quantitative chances of real differences in variables between groups were assessed qualitatively as <1%, almost certainly not; 1–5%, very unlikely; 5–25%, probably not; 25–75%, possibly; 75–97.5%, likely; 97.5–99%, very likely; >99%, most likely. If the chances of a variable having beneficial and harmful differences which were >5%, the true effect was deemed to be unclear (Hopkins, 2010). Quantitative data are presented as percent beneficial/trivial/harmful. Data are provided as mean ± SD and standardized mean differences (SMD), unless otherwise stated.

Results

Training

The average weekly distance covered in the intensive metrics was FAST: FO 2.5 ± 0.9 km, P 2.7 ± 0.7 km; HMLD: FO 2.3 ± 0.8 km P 2.5 ± 0.7 km; SPRINT: FO 177 ± 156 m P 166 ± 170 m. There were small but unclear differences between FO and P for both FAST (SMD = 0.36, 81/0/19) and HMLD (SMD = 0.28, 76/1/22), while trivial differences between FO and P for SPRINT (SMD = 0.07, 43/1/56).

Compliance and blood fatty acid concentrations

Compliance to consuming 2 drinks per day ranged from 79–100% while in New Zealand, with 12 players consuming 100% of their training drinks.
Coaching staff reported all drinks were consumed in Australia. At baseline % omega-3 PUFA concentrations were 1.12 ± 0.89% and 1.41 ± 1.01% for FO and P respectively, changing to 3.81 ± 5.66% and 1.30 ± 1.13% after 5 weeks for FO and P, respectively, (Figure 1). Accounting for baseline values, there was a very large likely beneficial effect of FO in terms of increasing blood omega-3 PUFA concentrations compared to P (SMD 2.84, 87/6/8).

Dietary intakes and randomization

Dietary fish consumption ranged from 0 to 3 servings per week at both the mid- (FO: 1.3 ± 0.8 servings per week and P: 0.9 ± 1.3 servings per week) and final (FO: 1.83 ± 1.00 servings per week and P: 1.80 ± 1.03 servings per week) time point. Twenty-seven percent of participants in P correctly stated that they were assigned to the placebo, whereas a further 27% incorrectly believed they were assigned to the FO condition and remaining participants were unsure.

Anthropometrics

In FO, body mass increased from 106.9 ± 8.3 kg to 107.1 ± 8.1 kg whereas in P, body mass increased from 106.7 ± 16.5 kg to 107.3 ± 16.6 kg (SMD −0.03, trivial; 100% most likely trivial effect). In FO, the sum of eight skinfolds was 70.8 ± 14.4 mm at baseline and 67.5 ± 15.5 mm post-intervention, whereas P was 74.4 ± 17.2 mm at baseline decreasing to 71.5 ± 17.6 mm post-intervention. There was an unclear trivial effect on the change in skinfolds from pre to post between FO and P (SMD: 0.02 trivial; 1/95/3 unclear).

Countermovement jump

Peak force during the CMJ at baseline was 2705.2 ± 271.4 N (range 2399.8–3031.8 N) and 2858.5 ± 339.7 N (range 2269.4–3183.7 N) for FO and P groups, respectively. By day 35 of the training camp, 7 participants in P recorded lower CMJ peak force scores compared with baseline resulting in a mean decrease of 3.4 ± 8.6% (2772.4 ± 481.1 N). In contrast, peak force during the CMJ increased by 4.6 ± 5.9% by day 35 in FO (2816.0 ± 309.0 N), with only two participants producing less force on day 35 compared to baseline. Expressed as a change in CMJ peak force from baseline, there was a likely beneficial effect of FO on CMJ performance at day 16 and day 35 (Figure 2).

Muscle soreness

Expressed as a change from baseline, with the exception of day 12, a likely or very likely beneficial effect of

![Figure 2. Countermovement jump performance, expressed as mean(SD) percent change from baseline for fish oil (FO) and placebo (P) conditions during the 35 day period of pre-season training.](https://example.com/figure2.png)

* Small standardised mean difference likely positive for change from baseline between fish oil and placebo
* Moderate, standardised mean difference between placebo and fish oil for change from baseline (likely beneficial), Day 16 (SMD 0.89 moderate; 87/6/8 likely beneficial); Day 35 (SMD 0.60 moderate; 92/10 likely beneficial)
* Moderate, standardised mean difference between placebo and fish oil for change from baseline; possibly beneficial
Effect sizes were interpreted as trivial =0.20; small 0.20–0.59; moderate 0.60–1.19; large 1.20–1.99; very large 2.0–3.9; and almost perfect >4.00.
FO on lower body muscle soreness was observed at all timepoints (Figure 3(b)). At baseline, median (IQR) upper body muscle soreness was 8(1.5) and 8(2) (maximum value 10 which equates to “no soreness”) for FO and P, respectively. On Day 22 (two days after the in-house match), expressed as change from baseline, there was a likely harmful effect of FO on upper body muscle soreness whereby the muscle soreness was 4.57 out of a potential score of 10 (no muscle soreness) for FO and 6.82 for P (Figure 3(a)). Interestingly, the two players in FO that recorded the maximum soreness at this time point were forwards and one player played for the developmental squad against the senior squad for the match, so may have been subjected to heavier impacts throughout the match. Repeating statistical analysis of the upper body muscle soreness data set with this player’s data at the 22-day timepoint removed reduced the SMD to −0.84 moderate (7/11/82 unclear).

Subjective measures of fatigue, sleep, stress and mood

Expressed as a change from baseline, a likely moderate beneficial effect (less fatigue) of FO was observed for subjective fatigue from Day 20–35 (Figure 4), with the mean decrease for P being greater than 1 (on a 5-point Likert scale) on all days compared to a mean score decrease of less than 1 for FO between days 20–35. However, there were only trivial or small unclear effects on stress or mood responses (data not shown). On Day 22, there was a moderate (0.83) likely beneficial (88/9/3) effect of FO compared to P on sleep quality, however, at all other timepoints there were trivial or small unclear effects (data not shown).

Discussion

This is the first study, to our knowledge, to investigate the impact of fish oil derived omega-3 PUFA ingestion on muscle recovery within the real world, applied, field setting of elite Rugby Union. We report a very large likely beneficial effect of FO on increasing blood omega-3 PUFA concentrations compared to P over the course of the pre-season training period. Consistent with our working hypothesis, we observed a moderate beneficial effect of adding 1546 mg of omega-3 PUFA (551 mg of EPA and 551 mg DHA) to a protein-based drink over 5 weeks of pre-season training on lower body muscle soreness, fatigue and CMJ performance in professional Rugby Union players competing in the Super Rugby competition. In contrast, there was a trivial effect of adding omega-3 PUFA to a protein-based drink on sleep, stress and mood. These data suggest that twice per day supplementation with a protein-based drink containing omega-3 PUFA has the potential to attenuate lower body muscle soreness and fatigue and better maintain neuromuscular performance in elite Rugby Union players during pre-season training. The present study findings could have important implications for Rugby Union players in terms of minimizing muscle soreness and fatigue and maintaining performance when the recovery period between training sessions or match play is short. In the current study, the time between the match and the physiological measurements was similar to the time period between matches and training typically scheduled during the competitive season. In theory, reducing the severity of muscle soreness between matches and training could have
beneficial effects on training performance by allowing players to train at higher intensities during the season. Furthermore, the reduced muscle soreness with fish oil ingestion could have a psychological impact by reducing feelings of fatigue, thus improving a player’s approach to training and matches.

Several previous studies, conducted in controlled laboratory settings, report a beneficial effect of fish oil supplementation on the perception of muscle soreness following intense eccentric exercise (Corder et al., 2016; Jouris et al., 2011; Lembke et al., 2014; Tinsley et al., 2016; Tsuchiya, Yanagimoto, Nakazato, Hayamizu, & Ochi, 2016). Consistent with these experimental study findings, the present field-based study, which included a training protocol reflective of professional rugby with progressive resistance training and high volumes of anaerobic training, revealed a moderately beneficial effect of fish oil ingestion on muscle soreness during pre-season Rugby training. Specifically, a moderate beneficial effect of fish oil ingestion was observed on lower limb muscle soreness, whereas the effect on upper body soreness was unclear. We speculate that the beneficial effect of fish oil ingestion was mediated, at least in part, by the modification of the 3-series eicosanoids, 3-series prostaglandins and 5-series leukotriene. The 3-series eicosanoids exhibit lower inflammatory properties than the 2-series eicosanoids (PGE$_2$, 4-series leukotriene) and are proposed to decrease the inflammatory response to exercise and attenuate muscle soreness (Lenn et al., 2002). In support of this theory, muscle soreness is proposed to be associated with biochemical muscle damage to the sarcomere and free radical damage (Lewis et al., 2012). This damage leads to an inflammatory response which may contribute to the sensation of soreness and potentially a decrement in performance (Jakeman, Lambrick, Wooley, Babraj, & Faulkner, 2017). Alternatively, adding fish oil to a protein-based drink may attenuate muscle soreness by protecting the structural integrity of the muscle cell from damage. We previously demonstrated that the increase in plasma CK concentrations following eccentric exercise was reduced with the addition of fish oil to a protein-based supplement (Philpott et al., 2018). These data indicate a reduced leakage of CK from the muscle cell into circulation following fish oil ingestion. Hence, the exact mechanism for fish oil ingestion reducing muscle soreness remains unclear.

The better CMJ performance scores with fish oil ingestion may also be due to a reduced perception of muscle soreness. Alternatively, the benefit of fish oil ingestion on CMJ performance may have been mediated at the neuromuscular level since explosive power is determined by both the stretch-shortening
cycle as well as the contractile properties of the muscle (add ref). Accordingly, previous studies demonstrate that decrements in CMJ performance in professional Rugby League players during the initial 48 h following match play are due, in part, to changes in neural fatigue (McLean et al., 2010). Interestingly, a recent study reported that 21 days of fish oil supplementation exhibited positive changes in neuromuscular function (Lewis et al., 2015) which could explain the findings in the present study. Due to the nature of conducting research in an applied field setting with elite athletes, it was not possible to collect venous blood samples for analysis of blood markers of muscle damage, inflammation or oxidative stress. Furthermore, it was not possible to conduct more direct measurements of neuromuscular function such as electromyography (EMG). Therefore, it was not possible to definitively explain the mechanisms mediating the link between fish oil ingestion and better CMJ performance. Future applied research designs are warranted in the context of fish oil ingestion and recovery to measure performance outcomes alongside more mechanistic biochemical and neuromuscular measurements.

The beneficial effects of fish oil ingestion on muscle soreness were observed 36 h following international travel. Jet-lag occurs when greater than three time zones have been crossed (O’Connor & Morgan, 1990). In the present study, players crossed three time zones between Australia and New Zealand. Symptoms of jet-lag include fatigue, inability to sleep and potentially decrements in CMJ (Chapman, Bullock, Ross, Rosemond, & Martin, 2012). On day 35, there were beneficial effects of FO on CMJ, and moderately lower fatigue scores. Hence, we may speculate that FO ingestion attenuated the detrimental impact of jet-lag on muscle recovery in our cohort of elite Rugby Union players and thus a follow-up study is warranted.

Despite the present study revealing a beneficial effect of adding omega-3 fatty acids to a protein-based supplement on muscle soreness and CMJ performance, we did detect a detrimental effect on upper body muscle soreness on day 22. This observation may be due to the pre-season training schedule including a match on day 20 where we were unable to control workload between test drink conditions as previously achieved with training sessions. Also noteworthy was the observation that the highest upper body muscle soreness scores were reported by two forwards who are typically involved in the majority of collision impacts. One player was a flanker and this position is characterized by frequent involvement in breakdown play and subsequent impact on the upper body. These physical demands may have impacted the soreness results at this time point, especially since only trivial or moderately beneficial effects of FO on upper body soreness were detected at all other timepoints. In the present study, the primary endpoint measurement of performance was focused on CMJ performance. Therefore, we cannot discern the impact of fish oil ingestion on upper body performance in this study. It is possible that the study duration was not sufficient for maximal incorporation of EPA and DHA into the muscle phospholipid membrane. This notion is based on the findings of McGlory et al. (2014) that reported an increase in n-3 polyunsaturated fatty acid muscle lipid composition after 2 weeks of fish oil supplementation at a dose of 5 g/day, with these rates of incorporation continuing to rise after 4 weeks of supplementation (McGlory et al., 2014). Given the lower relative dose of fish oil administered in the present study, it may be argued that our supplementation regimen was not optimal. However, based on the work of McGlory et al. (2014), 5 weeks of supplementation was likely sufficient to detect a significant increase in the level of n-3 PUFA incorporation into muscle in our cohort of elite Rugby Union players.

Despite the beneficial effects of adding fish oil to a protein-based supplement on fatigue, other markers of wellness, stress, mood and sleep quality were only trivially affected. However, no player reported a score lower than “normal” for stress or mood and only one player rated sleep as lower than “normal” throughout the study. These data suggest that although the training camp was intensive, it had little impact on player mood, stress or sleep quality. Therefore, any potential impact of fish oil ingestion on these measures could not be detected in this study.

Conclusion

The addition of fish oil (1546 mg of omega-3 PUFA; 551 mg EPA and 551 mg DHA) to a protein-based drink for 5 weeks provided an effective strategy to reduce muscle soreness and fatigue and better maintain CMJ performance during pre-season training in elite Rugby Union players. These beneficial effects may confer benefits to muscle recovery between training sessions and also improve subsequent match play performance, especially when the period between matches is short.

Acknowledgements

Interventions (FO and P) were supplied by Smartfish, Oslo, Norway.
Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This work was supported by the E.O.Naylor Summer Studentship fund (University of Otago).

References

Adding omega-3 fatty acids to a protein-based supplement maintains explosive power

